NumPy
The fundamental package for scientific computing with Python
D&I Grant from CZI
Including NumPy, SciPy, Matplotlib and Pandas

Powerful N-dimensional arrays
Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.

Numerical computing tools
NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.

Interoperable
NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.

Performant
The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.

Easy to use
NumPy’s high level syntax makes it accessible and productive for programmers from any background or experience level.

Shop Up to 70% Off Dance 2005 Official UK Outlet Store

Küche, Haushalt Wohnen => Wohnaccessoires Deko => Kunstblumen -pflanzen Shop Discounted Sale 100% Dance 2005 Lidylinashop Künstliche Blätter für Wohnkultur Künstliche Blätte UMWELTFREUNDLICH UND SICHER: Künstliche Pflanzen werden aus Öko-Materialien hergestellt. Grüne Umweltschutzmaterialien können Sie, Ihre Familie und Ihre Haustiere schützen. REAL TOUCH: Die perfekte Größe für ein Schaufenster oder einen Wohnwagen. Diese künstlichen Blumen sehen umwerfend aus. Gefälschte Pflanzen sorgen für großartige Ornamente. GARTENDEKOR: Diese niedlichen Pflanzen sind eine großartige Möglichkeit, das Aussehen frischer Pflanzen im Haus zu bewahren, ohne sich um Über- und Unterbewässerung zu sorgen. Sie haben auch Ihr Leben aufgehellt. NICE GIFT: Charmantes Aussehen und pflegeleichte Pflege, jeder Mensch wird sie beim ersten Anblick, an den wir glauben, so lieben. BREIT ANWENDUNG: Büropflanze, Zimmerpflanze, Zimmerpflanze, Wintergartenpflanze, Fensterbankpflanze; Geburtstagsgeschenk, Geburtstagsgeschenk, Ruhestand Geschenk, lebendiges Geschenk, Hochzeitsgeschenk, Hochzeitsgeschenk. Produktbeschreibungen Größe: Wie das Bild zeigt.Paket: 1 PCAnlass: wohnkultur, indoor outdoor dekoration, garten, büro, veranda, hochzeitsdekoration und so weiter.Geeignet: beste pflanzenliebhaber geschenk für mutter, frau, tochter, tante, beste freundin, freundin und die, die sie lieben und die person, die sie interessiert.Unsere Garantie: Wir bieten eine 100% Zufriedenheitsgarantie! Wenn Sie mit unserem Produkt oder einem anderen Problem nicht zufrieden sind, setzen Sie sich bitte zuerst mit uns in Verbindung, damit wir Ihnen so schnell wie möglich antworten und Ihnen helfen können.Hinweis: Bitte haben Sie Verständnis dafür, dass manuelle Messungen geringfügige Fehler aufweisen können. we promise to: source only the best consumer goods and ensure the highest quality possible.streamline the buying and payment process making it as easy as possible.help you discover products and manufacturers in china. deliver goods to our customers all over the world with speed and precision.provide 24 hour customer support on weekdays. Shop Up to 70% Off Dance 2005 Official UK Outlet Store
Open source
Distributed under a liberal BSD license, NumPy is developed and maintained publicly on GitHub by a vibrant, responsive, and diverse community.

Try NumPy
Enable the interactive shell

Shop Up to 70% Off Dance 2005 Official UK Outlet Store

Dance 2005 Material: Baumwolle Paket enthalten: 1 Paar Die Fliesenlänge beträgt ca. 18cm, elastisch und dehnbar, der Fehler beträgt ca. 1cm Das Cross-Belt-Design gibt Schweiß und Feuchtigkeit leicht ab und hilft so zu schwitzen und Gerüche zu reduzieren. Es passt sich der Form eines menschlichen Fußes an und verletzt den Knöchel nicht. Farbe:Dunkelgrau Shop Up to 70% Off Dance 2005 Official UK Outlet Store Clearance Discount Sale Online Fashion => Sportartspezifische Bekleidung => Yoga LoveAloe Yoga Socken mit Griffen für Frauen rutschfeste klebrige our store is a technology-led retailer; its website receives more than a billion visits a year and 90% of sales originate online.
>

Shop Up to 70% Off Dance 2005 Official UK Outlet Store

home
Dance 2005
Dance 2005

|||
  • Nearly every scientist working in Python draws on the power of NumPy.

    NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to learn and use. With this power comes simplicity: a solution in NumPy is often clear and elegant.

    Quantum Computing Statistical Computing Signal Processing Image Processing Graphs and Networks Astronomy Processes Cognitive Psychology
    QuTiP Pandas SciPy Scikit-image NetworkX AstroPy PsychoPy
    PyQuil statsmodels PyWavelets OpenCV graph-tool SunPy
    Qiskit Xarray python-control Mahotas igraph SpacePy
    Seaborn PyGSP
    Bioinformatics Bayesian Inference Mathematical Analysis Chemistry Geoscience Geographic Processing Architecture & Engineering
    BioPython PyStan SciPy Cantera Pangeo Shapely COMPAS
    Scikit-Bio PyMC3 SymPy MDAnalysis Simpeg GeoPandas City Energy Analyst
    PyEnsembl ArviZ cvxpy RDKit ObsPy Folium Sverchok
    ETE emcee FEniCS Fatiando a Terra
  • NumPy's API is the starting point when libraries are written to exploit innovative hardware, create specialized array types, or add capabilities beyond what NumPy provides.

    Array Library Capabilities & Application areas
    Dask Distributed arrays and advanced parallelism for analytics, enabling performance at scale.
    CuPy NumPy-compatible array library for GPU-accelerated computing with Python.
    JAX Composable transformations of NumPy programs: differentiate, vectorize, just-in-time compilation to GPU/TPU.
    Xarray Labeled, indexed multi-dimensional arrays for advanced analytics and visualization
    Sparse NumPy-compatible sparse array library that integrates with Dask and SciPy's sparse linear algebra.
    PyTorch Deep learning framework that accelerates the path from research prototyping to production deployment.
    TensorFlow An end-to-end platform for machine learning to easily build and deploy ML powered applications.
    MXNet Deep learning framework suited for flexible research prototyping and production.
    Arrow A cross-language development platform for columnar in-memory data and analytics.
    xtensor Multi-dimensional arrays with broadcasting and lazy computing for numerical analysis.
    XND Develop libraries for array computing, recreating NumPy's foundational concepts.
    uarray Python backend system that decouples API from implementation; unumpy provides a NumPy API.
    tensorly Tensor learning, algebra and backends to seamlessly use NumPy, MXNet, PyTorch, TensorFlow or CuPy.
  • Shop Up to 70% Off Dance 2005 Official UK Outlet Store

    NumPy lies at the core of a rich ecosystem of data science libraries. A typical exploratory data science workflow might look like:

    For high data volumes, Dask and Ray are designed to scale. Stable deployments rely on data versioning (DVC), experiment tracking (MLFlow), and workflow automation (Airflow and Prefect).

  • NumPy forms the basis of powerful machine learning libraries like scikit-learn and SciPy. As machine learning grows, so does the list of libraries built on NumPy. TensorFlow’s deep learning capabilities have broad applications — among them speech and image recognition, text-based applications, time-series analysis, and video detection. PyTorch, another deep learning library, is popular among researchers in computer vision and natural language processing. MXNet is another AI package, providing blueprints and templates for deep learning.

    Statistical techniques called ensemble methods such as binning, bagging, stacking, and boosting are among the ML algorithms implemented by tools such as XGBoost, LightGBM, and CatBoost — one of the fastest inference engines. Yellowbrick and Eli5 offer machine learning visualizations.

  • Shop Up to 70% Off Dance 2005 Official UK Outlet Store

    NumPy is an essential component in the burgeoning Python visualization landscape, which includes Matplotlib, Seaborn, Plotly, Altair, Bokeh, Holoviz, Vispy, Napari, and PyVista, to name a few.

    NumPy’s accelerated processing of large arrays allows researchers to visualize datasets far larger than native Python could handle.

CASE STUDIES